Reaction Dynamics Through Kinetic Transition States
نویسندگان
چکیده
منابع مشابه
Reaction dynamics through kinetic transition states.
The transformation of a system from one state to another is often mediated by a bottleneck in the system's phase space. In chemistry, these bottlenecks are known as transition states through which the system has to pass in order to evolve from reactants to products. The chemical reactions are usually associated with configurational changes where the reactants and products states correspond, e.g...
متن کاملEnzyme homologues have distinct reaction paths through their transition states.
Recent studies of the bacterial enzymes EcMTAN and VcMTAN showed that they have different binding affinities for the same transition state analogue. This was surprising given the similarity of their active sites. We performed transition path sampling simulations of both enzymes to reveal the atomic details of the catalytic chemical step, which may be the key for explaining the inhibitor affinit...
متن کاملStochastic transition states: reaction geometry amidst noise.
Classical transition state theory (TST) is the cornerstone of reaction-rate theory. It postulates a partition of phase space into reactant and product regions, which are separated by a dividing surface that reactive trajectories must cross. In order not to overestimate the reaction rate, the dynamics must be free of recrossings of the dividing surface. This no-recrossing rule is difficult (and ...
متن کاملChaotic dynamics in multidimensional transition states.
The crossing of a transition state in a multidimensional reactive system is mediated by invariant geometric objects in phase space: An invariant hyper-sphere that represents the transition state itself and invariant hyper-cylinders that channel the system towards and away from the transition state. The existence of these structures can only be guaranteed if the invariant hyper-sphere is normall...
متن کاملEnzymatic transition states, transition-state analogs, dynamics, thermodynamics, and lifetimes.
Experimental analysis of enzymatic transition-state structures uses kinetic isotope effects (KIEs) to report on bonding and geometry differences between reactants and the transition state. Computational correlation of experimental values with chemical models permits three-dimensional geometric and electrostatic assignment of transition states formed at enzymatic catalytic sites. The combination...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Letters
سال: 2013
ISSN: 0031-9007,1079-7114
DOI: 10.1103/physrevlett.110.233201